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e.g.: virtual reality, tele-robotics, 
networked cars, etc.

Information at the monitor should accurately 
reflect the most recent state of the source.

Information Freshness

Emphasis on recent information at monitor, 
instead of individual packets/updates. 

New approaches towards formalizing 
INFORMATION FRESHNESS.

Using AGE OF INFORMATION (AoI) metric.

Most popular
Classical packet-based metrics (e.g. latency) not 

sufficient to quantify information freshness!
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In this talk ….

Sources

Monitor

Central 
Unit

Packets arrive 
intermittently

Begin with a simpler setting 
comprising a single source ….

AoI scheduling for a generic network!!
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System Model

Source Monitor
Arbitrary update generation times

Arbitrary update sizes 
(depending on source’s state)

Energy consumed at rate ′𝑐′ per 
unit transmission time

Sizes revealed at generation time!

Revealed 
causally!

At any time, the source can transmit 
• any available update (at most one)
• preemption is allowed

Time required to completely transmit
Fixed Energy Consumption
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Online Decision Problem:
At any time, which update to transmit (or, not to transmit)?

min lim
6→8

1
𝑇
'
9

6
𝐴𝑜𝐼 𝑡 + 𝑐 . 𝑢(𝑡) 𝑑𝑡

where 𝑢 𝑡 = 1 if an update is under transmission at 
time 𝑡, and 0 otherwise. 

Challenges??
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Source Monitor

Response-time:
Reception time (monitor) − Arrival time (source)

latency

flow-time

Objective: Schedule packet transmissions to minimize mean response-time.

SRPT (Shortest Remaining Processing Time):
At any time, transmit the packet with least remaining size.

Optimal!
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Prior Work
Response-time minimization Considered problem

Sufficient to transmit a subset of updatesAll packets need to be transmitted

Combinatorial nature!

Differences

𝑆𝑅𝑃𝑇 arbitrarily bad compared to OPT𝑆𝑅𝑃𝑇 is optimal

𝑆𝑅𝑃𝑇 gets stuck 
transmitting all 
these updates

OPT may transmit

𝑆𝑖𝑧𝑒 = 1

Time 𝑡

⋯⋯

0 1 2 3

Energy cost depends on updates transmittedEnergy cost independent of policy

Example
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𝑘 𝑙

𝐺(𝑡) 𝑡
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𝑔F < 𝑔G

A𝑜𝐼 𝑡

𝑗

(Be5er to transmit than not)(at time 𝑡)
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𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

Choice 1: Transmit update 𝑘 from time 𝑡

𝑔, 𝑔-
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𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙
𝑠% 𝑡

Transmission of update 𝑘 completes

𝑟,

Choice 1: Transmit update 𝑘 from time 𝑡

𝑔, 𝑔-
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𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙
𝑠% 𝑡

Transmission of update 𝑘 completes

𝑟,

Choice 1: Transmit update 𝑘 from time 𝑡

𝑔, 𝑔-



Which update to transmit?

𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙
𝑠% 𝑡

Update 𝑙 is the only 
fresh update

Choice 1: Transmit update 𝑘 from time 𝑡

𝑟,𝑔, 𝑔-
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A𝑜𝐼 𝑡

Choice 1: Transmit update 𝑘 from time 𝑡

𝑘 𝑙
𝑠% 𝑡
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𝑠& 𝑡

Transmission of update 𝑙 completes
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𝑘 𝑙
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A𝑜𝐼 𝑡

𝑘 𝑙

Choice 2: Transmit update 𝑙 from time 𝑡

𝑔, 𝑔-



Which update to transmit?

𝐺(𝑡) 𝑡
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A𝑜𝐼 𝑡

𝑘 𝑙

𝑟-

𝑠& 𝑡

Choice 2: Transmit update 𝑙 from time 𝑡

Transmission of update 𝑙 completes

𝑔, 𝑔-
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𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑟-

𝑠& 𝑡

Choice 2: Transmit update 𝑙 from time 𝑡

Transmission of update 𝑙 completes

𝑔, 𝑔-
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𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑟- 𝑡′

𝑠& 𝑡

Choice 2: Transmit update 𝑙 from time 𝑡

Transmission of update 𝑙 completes

𝑔, 𝑔-
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𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑡′

AoI plot (choice 2)

AoI plot (choice 1)

Choices (at time 𝑡):
1. Transmit update 𝑘
2. Transmit update 𝑙

𝑔, 𝑔-



A
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Which update to transmit?

𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑡′

AoI plot (choice 2)

AoI plot (choice 1)

AoI cost (choice 1)= 𝐴𝑟𝑒𝑎(𝐴 + 𝐵)
AoI cost (choice 2)= 𝐴𝑟𝑒𝑎(𝐴 + 𝐶)

Choices (at time 𝑡):
1. Transmit update 𝑘
2. Transmit update 𝑙

𝑔, 𝑔-



A

C B

Which update to transmit?

𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑡′

AoI plot (choice 2)

AoI plot (choice 1)

AoI cost (choice 1)= 𝐴𝑟𝑒𝑎(𝐴 + 𝐵)
AoI cost (choice 2)= 𝐴𝑟𝑒𝑎(𝐴 + 𝐶)

Let 𝐴𝑟𝑒𝑎 𝐵 > 𝐴𝑟𝑒𝑎(𝐶):

Choices (at time 𝑡):
1. Transmit update 𝑘
2. Transmit update 𝑙

𝑔, 𝑔-



A

C B

Which update to transmit?

𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑡′

AoI plot (choice 2)

AoI plot (choice 1)

AoI cost (choice 1)= 𝐴𝑟𝑒𝑎(𝐴 + 𝐵)
AoI cost (choice 2)= 𝐴𝑟𝑒𝑎(𝐴 + 𝐶)

Let 𝐴𝑟𝑒𝑎 𝐵 > 𝐴𝑟𝑒𝑎(𝐶):

Choices (at time 𝑡):
1. Transmit update 𝑘
2. Transmit update 𝑙

Better to transmit update 𝑙
at time 𝑡 (choice 2)

𝑔, 𝑔-



A

C B

Which update to transmit?

𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑡′

AoI plot (choice 2)

AoI plot (choice 1)

AoI cost (choice 1)= 𝐴𝑟𝑒𝑎(𝐴 + 𝐵)
AoI cost (choice 2)= 𝐴𝑟𝑒𝑎(𝐴 + 𝐶)

Let 𝐴𝑟𝑒𝑎 𝐵 > 𝐴𝑟𝑒𝑎(𝐶):

Choices (at time 𝑡):
1. Transmit update 𝑘
2. Transmit update 𝑙

Better to transmit update 𝑙
at time 𝑡 (choice 2)

𝑔, 𝑔- (assuming no update generated in [𝑡, 𝑡1])



𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙
𝑠% 𝑡

𝑔, 𝑔-

What if …. a new update 𝑚 is generated

𝑔2

𝑚



𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙
𝑠% 𝑡

𝑔, 𝑔-

What if …. a new update 𝑚 is generated

𝑔2

𝑚

Transmission of update 𝑘 completes

Choice 1: Transmit update 𝑘 from time 𝑡



𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑡′

Transmission of update 𝑚 completes

𝑔2

𝑚

𝑟2𝑔, 𝑔-

What if …. a new update 𝑚 is generated
Choice 1: Transmit update 𝑘 from time 𝑡



𝑔2𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

Choice 2: Transmit update 𝑙 from time 𝑡

Transmission of update 𝑙
incomplete

𝑚

𝑔, 𝑔-

What if …. a new update 𝑚 is generated



𝑔2𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑟2 𝑡′

Choice 2: Transmit update 𝑙 from time 𝑡

𝑚

𝑔, 𝑔-

Transmission of update 𝑙
incomplete Best that could be done with choice 2

What if …. a new update 𝑚 is generated



𝑔2𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑟- 𝑡′

𝑚

𝑔, 𝑔-

AoI plot (choice 2)

AoI plot (choice 1)

Choices (at time 𝑡):
1. Transmit update 𝑘
2. Transmit update 𝑙

What if …. a new update 𝑚 is generated



𝑔2𝐺(𝑡) 𝑡

𝑐 = 0

A𝑜𝐼 𝑡

𝑘 𝑙

𝑟- 𝑡′

𝑚

𝑔, 𝑔-

AoI plot (choice 2)

AoI plot (choice 1)

Choices (at time 𝑡):
1. Transmit update 𝑘
2. Transmit update 𝑙

What if …. a new update 𝑚 is generated

Better to transmit update 𝑘
at time 𝑡 (choice 1)
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Depends on future update generation 
times and sizes



Which update to transmit? (Summary)

Optimality of a 
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Not known!



Which update to transmit? (Summary)

Optimality of a 
decision at time 𝑡

Depends on future update generation 
times and sizes

Not known!

Causal policy: Algorithm that at each time instant, chooses which update to transmit, using only causal information.

GOAL: Find a causal policy with least Competitive Ratio. 



Competitive Ratio (A Metric for Causal Policy)

• Input 𝜎	 : sequence of update generation times and sizes (not known to a causal policy).

• For given input 𝜎, let

• 𝐶𝑜𝑠𝑡(𝜋; 𝜎): cost incurred by causal policy 𝜋.

• 𝐶𝑜𝑠𝑡(∗; 𝜎): cost incurred by an OPT (optimal offline policy that knows 𝜎	 in advance).
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Competitive Ratio (A Metric for Causal Policy)

• Input 𝜎	 : sequence of update generation times and sizes (not known to a causal policy).

• For given input 𝜎, let

• 𝐶𝑜𝑠𝑡(𝜋; 𝜎): cost incurred by causal policy 𝜋.

• 𝐶𝑜𝑠𝑡(∗; 𝜎): cost incurred by an OPT (optimal offline policy that knows 𝜎	 in advance).

𝐶𝑅! = max
"

𝐶𝑜𝑠𝑡(𝜋; 𝜎)
𝐶𝑜𝑠𝑡(∗; 𝜎)

Competitive Ratio of policy 𝜋:
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦:
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Decisions 

based only 
on 𝑠J(𝑡)′𝑠
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Competitive 

Ratio

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦:
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Greedy Policy
At any time 𝑡

For each fresh update 𝑖

𝐺𝑅𝐴𝐷𝐸(𝑖, 𝑡) =
𝑔E − 𝐺(𝑡)
𝑠E(𝑡)

Transmit the update with 
largest GRADE

Accounts for both generation 
time and size of updates

However
Large update may preempt small update

Possible back-to-back preemptions
Define

Large AoI

Difficult to bound CR

Need to fix!



SRPT+



SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission



SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

SRPT



SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗

𝑠' 𝑡 = remaining size 
of update 𝑖 at time 𝑡

SRPT



SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗

Else
Continue to 

transmit 
update 𝑖

𝑠' 𝑡 = remaining size 
of update 𝑖 at time 𝑡

SRPT



SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗

Else
Continue to 

transmit 
update 𝑖

𝑠' 𝑡 = remaining size 
of update 𝑖 at time 𝑡

SRPT

Preemption never delays 
transmission completion



SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗

Else
Continue to 

transmit 
update 𝑖

𝑠' 𝑡 = remaining size 
of update 𝑖 at time 𝑡

SRPT

Preemption never delays 
transmission completion

Greedy Policy



SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

𝐺𝑅𝐴𝐷𝐸(𝑖, 𝑡) =
𝑔' − 𝐺(𝑡)
𝑠'(𝑡)

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)
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Else
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fresh updates
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with largest GRADE
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SRPT
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transmission completion
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Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗

Else
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update 𝑖
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fresh updates

Begin to transmit update 𝑖
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𝑠' 𝑡 = remaining size 
of update 𝑖 at time 𝑡

SRPT Greedy Policy

When 𝑐 = 0 Competitive Ratio of SRPT+ at most 3

𝐺𝑅𝐴𝐷𝐸(𝑖, 𝑡) =
𝑔' − 𝐺(𝑡)
𝑠'(𝑡)
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If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗

Else
Continue to 
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update 𝑖
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SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗

Else
Continue to 
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update 𝑖

From available 
fresh updates

Begin to transmit update 𝑖
with largest GRADE

𝑠' 𝑡 = remaining size 
of update 𝑖 at time 𝑡

SRPT Greedy Policy

Always transmitting when a 
fresh update is available

Not good when there is 
energy cost (i.e. 𝑐 > 0)
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𝑔' − 𝐺(𝑡)
𝑠'(𝑡)



SRPT+
At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗
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At any time 𝑡

Case 1: An update 𝑖 is under transmission Case 2: No update under transmission

If a new update 𝑗 arrives 
with size 𝑠!(𝑡) ≤ 𝑠"(𝑡)

Preempt update 𝑖, and 
begin to transmit update 𝑗

Else
Continue to 

transmit 
update 𝑖

From available 
fresh updates

Begin to transmit update 𝑖
with largest GRADE

𝑠' 𝑡 = remaining size 
of update 𝑖 at time 𝑡

SRPT Greedy Policy

Shortlist updates using a 
THRESHOLD CONDITION

Critical to limit energy cost

Controls whether to 
transmit or not 

𝐺𝑅𝐴𝐷𝐸(𝑖, 𝑡) =
𝑔' − 𝐺(𝑡)
𝑠'(𝑡)



Main Result

Theorem

Energy Cost 𝑐 = 0

Energy Cost 𝑐 > 0

Competitive Ratio of SRPT+ at most 3

Competitive Ratio of SRPT+ at most 5
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problem

Minimize AoI and 
energy cost Worst-case input

Arbitrary arrival times and sizes
Combinatorial!

Different from 
classical scheduling 

problems

Policies such as SRPT, LCFS, etc. has unbounded competitive ratio

SRPT

Greedy
Threshold condition

SRPT+
Competitive Ratio 

at most 5

Index-based (Greedy) policy is difficult to analyse
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subject to a constraint on the average transmission cost. 

minJ
G
(𝑤G . 𝐴𝐴𝑜𝐼G)

s. t.J
G
𝑐G . 𝑅G ≤ 𝐶YZ[

Decision Problem:  At each time, 
1. which source gets to transmit.
2. which update the source should transmit.

Only Causal 
Information
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Kadota & 
Modiano (2019) 

Discrete-time setting with
geometric distributions.

Derived causal 
policies with 

competitive ratio 
at most 4.

Multiple sources but without transmission cost:

Single source with transmission cost: 

Sun et al. (2017) An new update available at all 
times.

Derived an 
optimal causal 

policy.
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In this Work

We propose a randomized 
scheduling policy.

Competitive ratio: 

𝐶𝑅 ≤ 3 +max
!

"#$%#&'( )"
*(#&#()")

𝐺$ = update inter-generation time distribution for source 𝑙.

Analysis is tight for the considered policy
(dependence of its 𝐶𝑅	on max

G
!"#$"%&' ()
*'"%+(())

 is unavoidable).

For Continuous-Time setting with
• General distributions 𝐺%&𝑠 and 𝐷%&𝑠
• Non-negative transmission cost.
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that run in parallel
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Intuition
Source SchedulingUpdate Selection

Marks an update eligible for 
transmission at source 𝑙 with prob 𝑝G.

𝑝G  depends on all sources.

Controls the frequency at 
which a source transmits its 

marked updates. 

Critical to manage 
transmission cost.

𝑝G’s obtained by minimizing an 
upper bound on the AoI cost.
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Update inter-generation 
distributions 𝐺-

Size (transmission delay) 
distributions 𝐷-

Independent of size 
distributions 𝐷$.

At most 4 for common distributions 𝐺G  
like exponential, uniform and Rayleigh.

Unbounded CR if 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺- ≫ 𝑀𝑒𝑎𝑛"(𝐺-)

What’s the catch?
Because of non-preemptive 

assumption
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• Example:  

Source 
𝑙

𝑋-~𝐺- i.i.d.

Size 𝑆-~𝐷- i.i.d.

Transmit updates that min 
variance w.r.t. 𝑇"∗, for all 𝑙

Optimal inter-generation time of 
transmitted updates 𝑇"∗

Fixed 
Transm. 

Cost
Mean 
Size 

Generation 
Rate

Complicated for general 
distributions 𝐺-!

Optimal offline policy (OPT) 
may have zero variance

Need a better bound on OPT’s cost
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Towards preemptive setting ….
OPT may preempt updates and 

transmit new ones if transmission 
exceeds 𝜖 time units

Poor bound on 
cost of OPT

Time req to completely 
transmit one update

Latency of completely 
transmitted updates

Arbitrarily 
small

Cannot min time req to completely 
transmit at least one update.

“Nice” size distributions 𝐷- 
(e.g. exponential, uniform, etc.)

However! Can approx. with costs due to 
update inter-generation times

Competitive ratio (proposed policy): 

𝐶𝑅 ≤ 5 +max
$

%&'(&)*+ ,$
-+&)%(,$)

Exceeds non-preemptive case 
only by additive constant 2
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Combinatorial!

Single 
Source

Arbitrary update 
arrival times & 

sizes

Classical 
policies not 

useful

SRPT+ is 5-
competitive1

Multiple 
Sources

Arbitrary update 
arrival & size 
distributions

A doubly 
randomized 

policy

CR independent 
of size 

distribution*
2

Does there exist any causal policy with CR independent of 
update arrival distributions?
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