CNI Seminar

Online Age-of-Information Scheduling

Kumar Saurav
(TIFR, Mumbai)

Joint work with Prof. Rahul Vaze (TIFR, Mumbai)



Modern Applications

e.g.: virtual reality, tele-robotics,
networked cars, etc.

Monitor

g




Modern Applications

networked cars, etc.

¥

Information at the monitor should accurately
reflect the most recent state of the source.

[ e.g.: virtual reality, tele-robotics, }

Monitor




Modern Applications

networked cars, etc.

¥

Information at the monitor should accurately
reflect the most recent state of the source.

¥

[ Information Freshness J

[ e.g.: virtual reality, tele-robotics, }

Monitor




Modern Applications

e.g.: virtual reality, tele-robotics,
networked cars, etc.

¥

Information at the monitor should accurately
reflect the most recent state of the source.

¥

\ Information Freshness ]

.

Emphasis on recent information at monitor,
instead of individual packets/updates.

Monitor




Modern Applications

e.g.: virtual reality, tele-robotics,
networked cars, etc.

¥

Information at the monitor should accurately
reflect the most recent state of the source.

¥

\ Information Freshness ]

.

Emphasis on recent information at monitor,
instead of individual packets/updates.

Monitor

Classical packet-based metrics (e.g. latency) not
sufficient to quantify information freshness!



Modern Applications

e.g.: virtual reality, tele-robotics,
networked cars, etc.

¥

Information at the monitor should accurately
reflect the most recent state of the source.

¥

\ Information Freshness ]

A

Emphasis on recent information at monitor, _ New approaches towards formalizing
instead of individual packets/updates. INFORMATION FRESHNESS.

Monitor

Classical packet-based metrics (e.g. latency) not
sufficient to quantify information freshness!



Modern Applications

e.g.: virtual reality, tele-robotics,
networked cars, etc.

¥

Information at the monitor should accurately
reflect the most recent state of the source.

¥

\ Information Freshness ]

A

Emphasis on recent information at monitor, _ New approaches towards formalizing
instead of individual packets/updates. INFORMATION FRESHNESS.

Most popular
Classical packet-based metrics (e.g. latency) not l POp 1
sufficient to quantify information freshness! Using AGE OF INFORMATION (AO|) metric.
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In this talk .... Aol scheduling for a generic network!!

Begin with a simpler setting
comprising a single source ....
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SySte M M O d e | Fixed Energy Consumption
— Time required to completely transmit

Arbitrary[update sizes] Energy consumed at rate ‘¢’ per
(depending on source’s state) unit transmission time

Sizes revealed at generation time!

Arbitrary update[generatlon tlme@ @

/ At any time, the source can transmit
Revealecll * any available update (at most one)
causally! * preemption is allowed
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Objective

Minimize the sum of average Aol and average energy cost

T — oo

min lim %fo (Aol (t) + c - u(t))dt

where u(t) = 1 if an update is under transmission at
time t, and 0 otherwise.

Online Decision Problem:
At any time, which update to transmit (or, not to transmit)?

Challenges??
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Response-time minimization Considered problem
All packets need to be transmitted | » Sufficient to transmit a subset of updates
Energy cost independent of policy » Energy cost depends on updates transmitted
SRPT is optimal SRPT arbitrarily bad compared to OPT
Example
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Aol plot (choice 2) Choices (at time t):

\ 1. Transmit update k
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Choices (at time t):
1. Transmit update k
2. Transmit update [

Better to transmit update k
at time t (choice 1)
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Which update to transmit? (Summary)

Optimality of a Depends on

decision at time t

< future update generation >
times and sizes

Not known!

GOAL: Find a causal policy with least Competitive Ratio.

Causal policy: Algorithm that at each time instant, chooses which update to transmit, using only causal information.
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* Input o : sequence of update generation times and sizes (not known to a causal policy).

* For given input o, let
* Cost(m; o): costincurred by causal policy 7.

* Cost(*;0): costincurred by an OPT (optimal offline policy that knows ¢ in advance).

Cost(m; o)
Competitive Ratio of policy 7: CRT[ — max - t( )
o OSL(*,0
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At any time t

For each fresh update i

IDeﬁne generation time of latest update

. A completely transmitted until time ¢t
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For each fresh update i

Define

Transmit the update with
largest GRADE

Accounts for both generation
time and size of updates

However

Large update may preempt small update | >

@ Need to fix!

Possible back-to-back preemptions

!

Large Aol

Difficult to bound CR
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At any time t

[ Case 1: An update i is under transmission ]

y

SRPT

Else

If a new update j arrives
with size s;(t) < s;(t)

\ 4

Continue to
transmit

update i

v

\
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[ Case 1: An update i is under transmission ]

y

Else
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with size s;(t) < s;(t)

\ 4
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v

Preempt update i, and
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Preemption never delays
transmission completion

Q At any time t
Q
. 4 A\
[ Case 1: An update i is under transmission ] [ Case 2: No update under transmission ]
SRPT Greedy Policy
: ]
If a new update j arrives S el
with size s;(t) < s;(t) fresh updates
Else
v FT T T oIS
e (6 | s;(t) = remaining size | |
: i of update i attime t | '
transml’F JoLURCE A iEr | Begin to transmit update i
update ¢ | with largest GRADE
Preempt update i, and :““"_",_""g;_—_é(t_)":
begin to transmit update j . GRADE(i,t) = () |
D e e e e e e o 1 —_————
- J
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SRPT+ || Whene=0f—

Competitive Ratio of SRPT+ H at most 3 }

At any time t

[ Case 1: An update i is under transmission ]
SRPT

If a new update j arrives

y

with size s;(t) < s;(t)
Else
¥ Oyl
Continue to | s;{(t) = remaining size
transmit i of update i attime t
update i

Preempt update i, and
begin to transmit update j

__________________ Begin to transmit update i

[ Case 2: No update under transmission ]

LGreedy Policy

From available
fresh updates

[
: '
1

with largest GRADE




Always transmitting when a
fresh update is available

At any time t

{ Case 1: An update i is under transmission J [ Case 2: No update under transmission ]
| SRPT Greedy Policy
: ¥
If a new update j arrives Erom available
Else with size s;(t) < s;(t) fresh updates
S — | 5;(t) = remaining size ! |
S «of update i attime t | : o ;
S Y Mt Begin to transmit update i
update i | with largest GRADE

Preempt update i, and | . g —G(t)
begin to transmit update j . GRADE(i,t) = () |
D e e e e o -1 _— -
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energy cost (i.e. ¢ > 0)

At any time t

[ Case 1: An update i is under transmission J [ Case 2: No update under transmission ]
| SRPT Greedy Policy
: ¥
If a new update j arrives Erom available
Else with size s;(t) < s;(t) fresh updates
S — | 5;(t) = remaining size ! |
S «of update i attime t | : o ;
S Y Mt Begin to transmit update i
update i | with largest GRADE

Preempt update i, and | . g —G(t)
begin to transmit update j . GRADE(i,t) = () |
D e e e e o -1 _— -
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At any time t

[ Case 1: An update i is under transmission ] [ Case 2: No update under transmission ]
R | Greedy Policy
If a new update j arrives / From available /
with size s;(t) < s;(t) 0 CICELEE
Else ~v
" s.(£) = remainine size ' Shortlist updates using a
Continue to | s;(t) = remaining size | <
transmit 3 Qf_lﬂEd_a_t@ f iat_t_ir_n_e_t_ _: . THRESHOLD CONDITION
update i
v Begin to transmit update i
Preempt update i, and with largest GRADE

begin to transmitupdatej | ] @@ oo o=
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SRPT+

At any time t

[ Case 1: An update i is under transmission ] [ Case 2: No update under transmission ]
~ SRPT | Greedy Policy
If a new update j arrives / I;ronr}\] avaoillable /
with size s;(t) < s;(t) resh updates
Else =
" s.(£) = remainine size ' Shortlist updates using a
Continue to 1 5;(t) = remaining size | <
S—— | of update i attimet | THRESHOLD CONDITION
update i
v Begin to transmit update i
Preempt update i, and with largest GRADE

begin to transmitupdatej | ] @@ oo o=
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At any time t

Controls whether to
transmit or not

ﬁ:ritical to limit energy cost J

[ Case 1: An update i is under transmission ]

SRPT

y

Else

If a new update j arrives
with size s;(t) < s;(t)

\ 4

Continue to
transmit
update i

. 5;(t) = remaining size
| . .
i of update i attime t

v

Preempt update i, and
begin to transmit update j

— o e e o e e e e e e oy

[ Case 2: No update under transmission ]

|Greedy Policy

From available
fresh updates

- |
Shortlist updates using a
THRESHOLD CONDITION

Begin to transmit update i
with largest GRADE




Main Result

g

Theorem

[ Energy Costc =0 H Competitive Ratio of SRPT+ H at most 3 }
[ Energy Costc > 0 H Competitive Ratio of SRPT+ ]—{ at most 5 J

J
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problems

Summary so far

0 O

Online scheduling Minimize Aol and :
[ problem J »Q: energy cost j> » [ Worst-case input }

Arbitrary arrival times and sizes

Combmatoria/ /

[ Policies such as SRPT, LCFS, etc. has unbounded competitive ratio ]

[ Index-based (Greedy) policy is difficult to analyse ]

L SRPT ) Y T ( Competitive Ratio
® D u SRPT+} y =
. N f at most 5
Greedy

[ Threshold condition ]




System Model (General Setting)

We consider the setup
with multiple sources.




X; =inter-generation time of updates
at source [, with distribution G;

System Model

! ! !
« X{~Gy

! !

© Xp~Gy o

| }
© Xy~Gy
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At any time, at most one source can
transmit (one update).

Sy~Dy Centralized
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Fixed transmission (energy) cost ¢; for
each transmission by source [.

Total energy __ No. of update
T consumed transmissions

Sy~Dy Centralized
iid. Scheduler
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Minimize the weighted sum of the average Aol of sources,
subject to a constraint on the average transmission cost.

|

-

-
L l

\
min z (w; - AAol,)
l

c;* Ry < Cyax
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Number of updates source [
transmits per unit time
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/
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4 .. , ™
Decision Problem: At each time,

1. which source gets to transmit.

k2. which update the source should transmit.
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Objective

Minimize the weighted sum of the average Aol of sources,
subject to a constraint on the average transmission cost.

/
min z (w; - AAol;)
l

Stz C; - Rl < CMAX
L L v

a4 - : N
Only Causal Decision Problem: At each time,
Information 1. which source gets to transmit.
2. which update the source should transmit.

. J
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For Continuous-Time setting with
* General distributions G;s and D; s
* Non-negative transmission cost.

In this Work

Competitive ratio:

We propose a randomized
scheduling policy.

Variance(Gp)
CR<3+ Max — e TG

Analysis is tight for the considered policy

Variance(Gy) . |
arlance( l) IS unaVOIdable)-

(dependence of its CR on max =y ey

(; = update inter-generation time distribution for source .
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1) Update Selection
(which update is worth transmitting given the transmission cost)
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2) Source Selection (which source gets to transmit at any time)
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"\ For each source [, we define

probability
1

Marked updates

Mean inter-generation

¢ q; X time of marked updates
— E[T] at source [.
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For each source [, we define

probability
1 D1

B e E[T{] - Mean(Gy)
* Normalized such that Zl q = 1.

Among all sources, schedule source [
with probability g;.




Intuition

Update Selection Source Scheduling




Intuition

Update Selection Source Scheduling

Marks an update eligible for
transmission at source [ with prob p;.




Intuition

Update Selection Source Scheduling

Marks an update eligible for
transmission at source [ with prob p;.

p;’s obtained by minimizing an
upper bound on the Aol cost.




Intuition

Update Selection Source Scheduling

Marks an update eligible for
transmission at source [ with prob p;.

p;’s obtained by minimizing an
upper bound on the Aol cost.

o

[ p; depends on all sources. J




. Critical to manage
Intuition transmission cost.
®

&

Update Selection Source Scheduling

Marks an update eligible for
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p;’s obtained by minimizing an
upper bound on the Aol cost.
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. Critical to manage
Intuition transmission cost.
S

Update Selection

Marks an update eligible for
transmission at source [ with prob p;.

|

p;’s obtained by minimizing an
upper bound on the Aol cost.

o

[ p; depends on all sources. J

Source Scheduling

-

Controls the frequency at
which a source transmits its
marked updates.

~
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Quick Recap

[ Multiple Sources ] [ Arbitrary Distributions ] [ Fixed Transmission Cost ]

/\

Update inter-generation Size (transmission delay)
distributions G; distributions D,

* Proposed a novel two-stage randomized policy with competitive ratio (CR)

Independent of size At most 4 for common distributions G;
distributions D;. like exponential, uniform and Rayleigh.

What’s the catch? @

Because of non-preemptive

assumption Unbounded CR if Variance(G,;) >» Mean?(G;)
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CR dependent on G

* Example: Size S;~D; i.i.d.

/ Generation

Rate

Optimal inter-generation time of
transmitted updates T}’

T T

 Optimal offline policy (OPT) ! ransmit updates that min
l _

: may have zero variance J| ariance w.r.t. ", for all
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transmitted updates

y Arbitrarily
b small

l

Poor bound on
cost of OPT

|




Towards preemptive setting ....

g
Time req to completely
a )
OPT may preempt. updatesoan.d | transmit one update ) Arbitrarily
transmit new ones if transmission 2

~

~

exceeds € time units Latency of completely small
\_ J :
transmitted updates ) l
Example (Size distribution D;): Poor bound on
cost of OPT

[ For causal policy, not obvious when to preempt]

1/2 1/2

Probability

e~0 Update Size a> e



Towards preemptive setting ....

\ exceeds € time units D

Example (Size distribution D;):

1/2 1/2

Probability

e~0 Update Size a> e

4 . )
Time req to completely

4 I
Latency of completely

transmitted updates

a I
OPT may preempt. updatesoan.d | transmit one update ) Arbitrarily
transmit new ones if transmission

small

l

|

Poor bound on
cost of OPT

[ For@usal poIi@ not obvious when to preempt]

distributions (G;, D;), & Tx. cost ¢;

[ Need to work for all arrival & size }




Towards preemptive setting ....

\ exceeds € time units D

Example (Size distribution D;):

1/2 1/2

Probability

e~0 Update Size a> e

4 . )
Time req to completely

4 I
Latency of completely

transmitted updates

a I
OPT may preempt. updatesoan.d | transmit one update ) Arbitrarily
transmit new ones if transmission

small

l

|

Poor bound on
cost of OPT

[ For@usal poIi@ not obvious when to preempt]

distributions (G;, D;), & Tx. cost ¢;

[ Need to work for all arrival & size }

Hard to bound competitive ratio!



Towards preemptive setting ....

€ OPT may preempt updates and A
transmit new ones if transmission

\ exceeds € time units D

However!

" Time req to completely

transmit one update

\

J

-~

<\

Latency of completely
transmitted updates

~

Arbitrarily
small

l

Poor bound on
cost of OPT

|




Towards preemptive setting ....

g
Time req to completely
a )
OPT may preempt. updatesoan.d transmit one update Arbitrarily
transmit new ones if transmission b -’

~

4 )

exceeds € time units Latency of completely small
- V ;
transmitted updates ) l
However! Poor bound on
cost of OPT

“Nice” size distributions D;
(e.g. exponential, uniform, etc.)




Towards preemptive setting ....

" Time req to completely

a I
OPT may preempt. updatesoan.d | transmit one update ) Arbitrarily
transmit new ones if transmission p 2
exceeds € time units Latency of completely small
\_ J :
transmitted updates ) l

However! Poor bound on
cost of OPT

~

“Nice” size distributions D;
(e.g. exponential, uniform, etc.)

Cannot min time req to completely
transmit at least one update.




Towards preemptive setting ....

\

~ ~ " Time re pletely

OPT may preempt. updatesoan.d trans odate Arbitrarily
transmit new ones if transmission > <

exceeds € time units Latency of completely small
\_ J :
transmitted updates ) l
However! Poor bound on
cost of OPT

“Nice” size distributions D;
(e.g. exponential, uniform, etc.)

Cannot min time req to completely
transmit at least one update.




Towards preemptive setting ....

4 )
Time re pletely
a I
OPT may preempt updates and :
yp ptup <\ transModate /> Arbitrarily

transmit new ones if transmission p 2
small
atency of completely
_ \lransmitted updates | l

9 exceeds € time units P
However! Can approx. with costs due to Poor bound on}
j update inter-generation times cost of OPT

“Nice” size distributions D;
(e.g. exponential, uniform, etc.)

Cannot min time req to completely
transmit at least one update.




Towards preemptive setting ....

- N\
Time re pletely
" OPT may preempt updates and \< transg gpdate >
Y J

transmit new ones if transmission p 2
atency of completely
L transmitted updates J

9 exceeds € time units P
However! Can approx. with costs due to
j update inter-generation times

“Nice” size distributions D;
(e.g. exponential, uniform, etc.)

Cannot min time req to completely
transmit at least one update.




Towards preemptive setting ....

- )
Time re pletely
4 OPT may preempt updates and \< tranSModate >
_

transmit new ones if transmission p <
atency of completely
L transmitted updates J

9 exceeds € time units P
However! Can approx. with costs due to
j update inter-generation times

“Nice” size distributions D;
(e.g. exponential, uniform, etc.)

Competitive ratio (proposed policy):

Variance(Gp)
J CR<5+ max = o2

Cannot min time req to completely
transmit at least one update.




Towards preemptive setting ....

- )
Time re pletely
4 OPT may preempt updates and \< tranSMOdate >
Y J

transmit new ones if transmission p 2
atency of completely
L transmitted updates J

9 exceeds € time units P
However! Can approx. with costs due to
j update inter-generation times

“Nice” size distributions D,
(e.g. exponential, uniform, etc.) Competitive ratio (proposed policy):

! CR <(5 + max Variance(G;
. — [ Mean4(Gp)
Cannot min time req to completely

transmit at least one update. Exceeds non-preemptive case
only by additive constant 2
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Conclusion { Online scheduling problem }»{ Minimize Aol and energy cost}

Single
Source

Multiple
Sources

Combinatorial!

Arbitrary update Classical
arrival times & policies not
sizes useful

SRPT+ is 5-
competitive

Arbitrary update A doubly CR independent
arrival & size randomized of size
distributions policy distribution™

Does there exist any causal policy with CR independent of

update arrival distributions?
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