CNI Seminar

Online *Age-of-Information* Scheduling

Kumar Saurav

(TIFR, Mumbai)

Joint work with Prof. Rahul Vaze *(TIFR, Mumbai)*

e.g.: virtual reality, tele-robotics, networked cars, etc.

e.g.: virtual reality, tele-robotics, networked cars, etc.

Information at the monitor should accurately reflect the most recent state of the source.

e.g.: virtual reality, tele-robotics, networked cars, etc.

Information at the monitor should accurately reflect the most recent state of the source.

Information Freshness

e.g.: virtual reality, tele-robotics, networked cars, etc.

Information at the monitor should accurately reflect the most recent state of the source.

Information Freshness

Emphasis on recent information at monitor, instead of individual packets/updates.

e.g.: virtual reality, tele-robotics, networked cars, etc.

Information at the monitor should accurately reflect the most recent state of the source.

Information Freshness

Emphasis on recent information at monitor, instead of individual packets/updates.

Classical packet-based metrics (e.g. latency) not sufficient to quantify information freshness!

e.g.: virtual reality, tele-robotics, networked cars, etc.

Information at the monitor should accurately reflect the most recent state of the source.

Information Freshness

Emphasis on recent information at monitor, instead of individual packets/updates.

Classical packet-based metrics (e.g. latency) not sufficient to quantify information freshness!

New approaches towards formalizing INFORMATION FRESHNESS.

e.g.: virtual reality, tele-robotics, networked cars, etc.

Information at the monitor should accurately reflect the most recent state of the source.

Information Freshness

Emphasis on recent information at monitor, instead of individual packets/updates.

Classical packet-based metrics (e.g. latency) not **American control of the Classical packet-based metrics (e.g. latency) not** sufficient to quantify information freshness!

New approaches towards formalizing INFORMATION FRESHNESS. Using AGE OF INFORMATION (AoI) metric.

In this talk AoI scheduling for a generic network!! Central Unit Monitor

Packets arrive

intermittently

Sources

System Model

System Model

System Model

Fixed Energy Consumption

$$
\min_{T\to\infty}\frac{1}{T}\int_0^T\bigl(AoI(t)+c\cdot u(t)\bigr)dt
$$

where $u(t) = 1$ if an update is under transmission at time t , and 0 otherwise.

$$
\min \lim_{T \to \infty} \frac{1}{T} \int_0^T (A o I(t) + c \cdot u(t)) dt
$$

where $u(t) = 1$ if an update is under transmission at time t , and 0 otherwise.

Online Decision Problem:

At any time, which update to transmit (or, not to transmit)?

$$
\min \lim_{T \to \infty} \frac{1}{T} \int_0^T (A o I(t) + c \cdot u(t)) dt
$$

where $u(t) = 1$ if an update is under transmission at time t , and 0 otherwise.

Online Decision Problem:

At any time, which update to transmit (or, not to transmit)?

Challenges??

• Response-time minimization

Objective: Schedule packet transmissions to minimize mean response-time.

Objective: Schedule packet transmissions to minimize mean response-time.

SRPT (Shortest Remaining Processing Time): At any time, transmit the packet with least remaining size.

Response-time minimization Considered problem

Response-time minimization Considered problem

All packets need to be transmitted **Sufficient to transmit a subset of updates**

Response-time minimization Considered problem

Combinatorial nature!

All packets need to be transmitted **Sufficient to transmit a subset of updates**

Differences

Response-time minimization Considered problem

Combinatorial nature!

All packets need to be transmitted **Sufficient to transmit a subset of updates**

Energy cost **independent** of policy **Energy cost depends on updates transmitted**

Differences

Response-time minimization **Considered problem**

SRPT is optimal

Combinatorial nature!

All packets need to be transmitted **Sufficient to transmit a subset of updates**

Energy cost **independent** of policy **Energy cost depends on updates transmitted**

Differences

Response-time minimization **Considered problem**

Combinatorial nature!

All packets need to be transmitted **Subset of updates** Sufficient to transmit a **subset of updates**

Energy cost **independent** of policy **Energy cost depends on updates transmitted**

SRPT is optimal SRPT arbitrarily bad compared to OPT

Differences

Response-time minimization **Considered problem**

Combinatorial nature!

All packets need to be transmitted **Subset of updates** Sufficient to transmit a subset of updates

Energy cost **independent** of policy **Energy cost depends on updates transmitted**

SRPT is optimal SRPT arbitrarily bad compared to OPT

Example

Response-time minimization **Considered problem**

All packets need to be transmitted **Subset of updates** Sufficient to transmit a subset of updates

Combinatorial nature!

Energy cost **independent** of policy **Energy cost depends on updates transmitted**

SRPT is optimal SRPT arbitrarily bad compared to OPT

Notations:

Constant!!

Notations:

generation time of latest update completely transmitted until time t (Remaining size at time t is 0)

generation time of latest update completely transmitted until time t (Remaining size at time t is 0)

$$
AoI(t) = t - G(t)
$$

Which update to transmit?

Old updates are useless

$$
AoI(t) = t - G(t)
$$

 $AoI(t) = t - G(t)$

 g_i $G(t)$ g_k g_l t $\begin{array}{c|c|c|c|c} i & j & k & l \end{array}$ Old updates are useless Fresh updates (may be transmitted) $\overline{\mathfrak{j}}$ *At time*

$$
AoI(t) = t - G(t)
$$

Choices (at time):

- 1. Transmit update k
- 2. Transmit update l
- 3. Wait (do not transmit)

 g_i $G(t)$ g_k g_l t $\begin{array}{c|c|c|c|c} i & j & k & l \end{array}$ Old updates are useless Fresh updates (may be transmitted) $\overline{\mathfrak{j}}$ *At time*

$$
AoI(t) = t - G(t)
$$

Choices (at time):

- 1. Transmit update k
- 2. Transmit update l
- 3. Wait (do not transmit)

Which is optimal?

(Better to transmit than not)

$c=0$

(Better to transmit than not)

 $c = 0$

 $c = 0$

Transmission of update l completes

Choice 1: Transmit update *k* from time *t*

Transmission of update l completes

 $c = 0$

Choice 2: Transmit update *l* from time *t*

Choice 2: Transmit update *l* from time *t*

Choice 2: Transmit update *l* from time t

Choices (at time):

- 1. Transmit update k
- 2. Transmit update l

Choices (at time): 1. Transmit update k

2. Transmit update l

AoI cost (*choice* 1) = $Area(A + B)$ AoI cost (*choice* 2) = $Area(A + C)$

Choices (at time): 1. Transmit update k

2. Transmit update l

AoI cost (*choice* 1) = $Area(A + B)$ AoI cost (*choice 2*) = $Area(A + C)$

Let $Area(B) > Area(C)$:

 $c = 0$

Choices (at time): 1. Transmit update k

2. Transmit update l

AoI cost (*choice* 1) = $Area(A + B)$ AoI cost (*choice 2*) = $Area(A + C)$

Let $Area(B) > Area(C)$:

Better to transmit update l at time (*choice 2*)

Choices (at time): 1. Transmit update k

2. Transmit update l

AoI cost (*choice* 1) = $Area(A + B)$ AoI cost (*choice 2*) = $Area(A + C)$

Let $Area(B) > Area(C)$:

Better to transmit update l at time (*choice 2*)

What if \dots a new update m is generated

What if \dots a new update m is generated Choice 1: Transmit update k from time t

 $c=0$

What if \dots a new update m is generated Choice 1: Transmit update k from time t

 $c=0$

What if \dots a new update m is generated Choice 2: Transmit update *l* from time t

 $c=0$

What if \dots a new update m is generated

Choice 2: Transmit update *l* from time *t*

What if \dots a new update m is generated

Choices (at time):

- 1. Transmit update k
- 2. Transmit update l

What if \dots a new update m is generated

Choices (at time):

- 1. Transmit update k
- 2. Transmit update l

Better to transmit update k at time (*choice 1*)

Which update to transmit? (Summary)

Optimality of a decision at time

Depends on future update generation times and sizes

Which update to transmit? (Summary)

Which update to transmit? (Summary)

GOAL: Find a causal policy with least *Competitive Ratio*.

Causal policy: Algorithm that at each time instant, chooses which update to transmit, using only causal information.

• Input σ : sequence of update generation times and sizes (not known to a causal policy).

- Input σ : sequence of update generation times and sizes (not known to a causal policy).
- For given input σ , let
	- $Cost(\pi; \sigma)$: cost incurred by causal policy π .
	- $Cost(*; \sigma)$: cost incurred by an OPT (optimal offline policy that knows σ in advance).

- Input σ : sequence of update generation times and sizes (not known to a causal policy).
- For given input σ , let
	- $Cost(\pi; \sigma)$: cost incurred by causal policy π .
	- $Cost(*; \sigma)$: cost incurred by an OPT (optimal offline policy that knows σ in advance).

Competitive Ratio of policy π :

$$
CR_{\pi} = \max_{\sigma} \frac{Cost(\pi; \sigma)}{Cost(*; \sigma)}
$$

Similarly:

Greedy Policy

 $G \nreedy Policy \longrightarrow \n\begin{array}{c} \n\text{Accounts for both generation} \\
\text{time and size of updates}\n\end{array}$ time and size of updates

Greedy Policy

Accounts for both generation time and size of updates

At any time

Accounts for both generation time and size of updates

At any time

generation time of latest update completely transmitted until time t

(Remaining size at time t is 0)

Greedy Policy

Accounts for both generation time and size of updates

However

At any time

Transmit the update with largest *GRADE*

Accounts for both generation time and size of updates

At any time

Transmit the update with largest *GRADE*

However

Large update may preempt small update

At any time

Case 1: An update *i* is under transmission \vert \vert \vert Case 2: No update under transmission

At any time

SRPT

At any time

At any time

At any time

Main Result

Summary so far

Summary so far

Online scheduling problem

Summary so far

Index-based (Greedy) policy is difficult to analyse

System Model (General Setting)

We consider the setup with multiple sources.

$$
\boxed{\min \sum_{l} (w_l \cdot A A o l_l)}
$$

s.t.
$$
\sum_{l} c_l \cdot R_l \leq C_{MAX}
$$

Minimize the weighted sum of the average AoI of sources, subject to a constraint on the average transmission cost.

Average AoI of source l

Minimize the weighted sum of the average AoI of sources, subject to a constraint on the average transmission cost.

for source l (constant)

Minimize the weighted sum of the average AoI of sources, subject to a constraint on the average transmission cost.

Number of updates source l transmits per unit time

Minimize the weighted sum of the average AoI of sources, subject to a constraint on the average transmission cost.

$$
\boxed{\min \sum_{l} (w_l \cdot A A o l_l)}
$$

s.t.
$$
\sum_{l} c_l \cdot R_l \leq C_{MAX}
$$

Decision Problem: At each time,

- 1. which source gets to transmit.
- 2. which update the source should transmit.

Minimize the weighted sum of the average AoI of sources, subject to a constraint on the average transmission cost.

$$
\boxed{\min \sum_{l} (w_l \cdot A A o l_l)}
$$

s.t.
$$
\sum_{l} c_l \cdot R_l \leq C_{MAX}
$$

Only Causal Information Decision Problem: At each time,

- 1. which source gets to transmit.
- 2. which update the source should transmit.

Prior Work

Prior Work

Single source with transmission cost:

Single source with transmission cost:

Sun et al. (2017)

Single source with transmission cost:

Multiple sources but without transmission cost:

Multiple sources but without transmission cost:

Kadota & Modiano (2019)

Multiple sources but without transmission cost:

Kadota & Modiano (2019)

Derived an optimal causal policy.

 \Rightarrow

Multiple sources but without transmission cost:

Kadota & Modiano (2019) *Discrete-time setting with geometric distributions.*

Derived causal policies with competitive ratio at most 4.

- General distributions $G'_{l} s$ and $D'_{l} s$
- *Non-negative transmission cost.*

- General distributions $G'_{l} s$ and $D'_{l} s$
- *Non-negative transmission cost.*

We propose a randomized scheduling policy.

- General distributions $G'_{l} s$ and $D'_{l} s$
- *Non-negative transmission cost.*

We propose a randomized scheduling policy.

Competitive ratio:

$$
CR \leq 3 + \max_{l} \frac{Variance(G_l)}{Mean^2(G_l)}
$$

$$
G_l
$$
 = update inter-generation time distribution for source *l*.

- General distributions $G'_{l} s$ and $D'_{l} s$
- *Non-negative transmission cost.*

 G_I = update inter-generation time distribution for source l.

- General distributions $G'_{l} s$ and $D'_{l} s$
- *Non-negative transmission cost.*

 G_I = update inter-generation time distribution for source l.

In this Work

For Continuous-Time setting with

- General distributions $G'_{l} s$ and $D'_{l} s$
- *Non-negative transmission cost.*

We propose a randomized scheduling policy.

Competitive ratio:

$$
CR \leq 3 + \max_{l} \frac{Variance(G_l)}{Mean^2(G_l)}
$$

Analysis is tight for the considered policy (dependence of its CR on max \boldsymbol{l} $\frac{Variance(G_l)}{Mean^2(G_l)}$ is unavoidable).

 G_I = update inter-generation time distribution for source l.

First Subroutine

First Subroutine

1) Update Selection at Sources

• At each source l , whenever an update is generated,

First Subroutine

- At each source l , whenever an update is generated,
	- Mark the generated update with fixed probability p_l (independently).

First Subroutine

1) Update Selection at Sources

- At each source l , whenever an update is generated,
	- Mark the generated update with fixed probability p_l (independently).

Found by *min* an upper bound on the cost!!

First Subroutine

- At each source l , whenever an update is generated,
	- Mark the generated update with fixed probability p_i (independently).
	- Updates that are not marked are discarded.

First Subroutine

- At each source l , whenever an update is generated,
	- Mark the generated update with fixed probability p_l (independently).
	- Updates that are not marked are discarded.

First Subroutine

- At each source l , whenever an update is generated,
	- Mark the generated update with fixed probability p_l (independently).
	- Updates that are not marked are discarded.

w.p. p_l

First Subroutine

- At each source l , whenever an update is generated,
	- Mark the generated update with fixed probability p_l (independently).
	- Updates that are not marked are discarded.
- When source l is selected to transmit,

First Subroutine

- At each source l , whenever an update is generated,
	- Mark the generated update with fixed probability p_i (independently).
	- Updates that are not marked are discarded.
- When source l is selected to transmit,
	- Immediately transmit source's latest marked update (if any).

Intuition

Update Selection | Source Scheduling

Marks an update eligible for transmission at source *l* with prob p_l .

 p_l 's obtained by minimizing an upper bound on the AoI cost.

transmission at source *l* with prob p_l .

 p_1 's obtained by minimizing an upper bound on the AoI cost.

 p_l 's obtained by minimizing an upper bound on the AoI cost.

Quick Recap

Quick Recap

Multiple Sources

Independent of size distributions D_1 .

Independent of size distributions $D₁$.

At most 4 for common distributions G_I like exponential, uniform and Rayleigh.

Independent of size distributions $D₁$.

At most 4 for common distributions G_I like exponential, uniform and Rayleigh.

What's the catch?

Independent of size distributions $D₁$.

At most 4 for common distributions G_I like exponential, uniform and Rayleigh.

What's the catch?

Unbounded CR if $Variance(G_l) \gg Mean^2(G_l)$

CR dependent on G_l

CR independent of D_l

CR independent of D_l

Inter-generation time T_l of **transmitted** updates

Latency L_l for **transmitted** updates

For appropriate T_l , latency L_l primarily depends on update size $S_l \sim D_l$

depends on update size $S_1 \sim D_1$

OPT may preempt updates and transmit new ones if transmission exceeds ϵ time units

OPT may preempt updates and transmit new ones if transmission exceeds ϵ time units

Time req to completely transmit one update

OPT may preempt updates and transmit new ones if transmission exceeds ϵ time units

"Nice" size distributions D_l (e.g. exponential, uniform, etc.)

Towards preemptive setting ….

OPT may preempt updates and transmit new ones if transmission exceeds ϵ time units

"Nice" size distributions D_I (e.g. exponential, uniform, etc.)

Cannot min time req to completely transmit at least one update.

Time req to completely transmit on update Latency of completely transmitted updates

Poor bund on

Nitrari

small

cost of O

However! Can approx. with costs due to update inter-generation times

Towards preemptive setting ….

"Nice" size distributions D_I (e.g. exponential, uniform, etc.)

Cannot min time req to completely transmit at least one update.

Competitive ratio (proposed policy):

 $CR \leq (5 + \text{max})$ \boldsymbol{l} $\pmb{Variance(G_l)}$ $\overline{Mean^2(G)}$

Exceeds non-preemptive case only by additive constant 2

Na

Conclusion

Conclusion | Online scheduling problem

Conclusion | Online scheduling problem | Minimize AoI and energy cost

Conclusion | Online scheduling problem | Minimize AoI and energy cost

Combinatorial!

Does there exist any causal policy with CR independent of update arrival distributions?

• Kumar Saurav & Rahul Vaze. Minimizing Age of Information under Arbitrary Arrival Model with Arbitrary Packet Size. Performance Evaluation, 2023.

- Kumar Saurav & Rahul Vaze. Minimizing Age of Information under Arbitrary Arrival Model with Arbitrary Packet Size. Performance Evaluation, 2023.
	- Results for stochastic setting appeared in IEEE INFOCOM 2021.

- Kumar Saurav & Rahul Vaze. Minimizing Age of Information under Arbitrary Arrival Model with Arbitrary Packet Size. Performance Evaluation, 2023.
	- Results for stochastic setting appeared in IEEE INFOCOM 2021.
	- Results for tuneable transmission rate/energy consumption model appeared in IEEE Journal on Selected Areas in Information Theory, 2023.

- Kumar Saurav & Rahul Vaze. Minimizing Age of Information under Arbitrary Arrival Model with Arbitrary Packet Size. Performance Evaluation, 2023.
	- Results for stochastic setting appeared in IEEE INFOCOM 2021.
	- Results for tuneable transmission rate/energy consumption model appeared in IEEE Journal on Selected Areas in Information Theory, 2023.
- Kumar Saurav & Rahul Vaze. *Scheduling to minimize age of information with multiple sources*. IEEE Journal on Selected Areas in Information Theory, 2023, IEEE.

